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Abstract: Time delays are usually unavoidable in the engineering systems like mechanical and electrical 

systems etc. The presence of delay causes unwanted impacts on the system under consideration which imposes 

strict limitations on achievable or targeted feedback performance in both continuous and discrete systems. The 

presence of the delay complicates the design process as well. It makes continuous systems to be infinite 

dimensional and also it significantly increases the dimensions in discrete systems. As the internal model control 

based proportional integral derivative controller are simple and robust to handle the model uncertainties and 

disturbances. But they are less sensitive to noise than proportional integral derivative controller for an actual 

process in industries. It results in only one tuning parameter which is closed loop time constant λ internal model 

controller filter factor. It also provides a good solution to the process with significant time delays which is 

actually the case with working in real time environment. So in this paper internal model control based 

proportional integral derivative controller is designed. The Pade’s approximation for the time delay has been 

used because most of the controller design based on different methods can not be used with the delayed systems. 

While comparing the responses of the transfer functions of different kinds of orders the internal model control 

based proportional integral derivative controller will not give the same results as the internal model control 

strategy because of approximation used for delay time. Also the standard internal model filter from f(s) =1 / (λs 

+ 1) shows good set point tracking. Thus internal model control based proportional integral derivative   

controller is able to compensate for disturbances and model uncertainty while open loop control is not. Internal 

model control is also detuned to assure sstability even if there is model uncertainty. 

Keywords: IMC, IMC–PID method, IMC–PID  tuning with time delay 

 

1. INTRODUCTION 

The model based control systems are often used to 

track set points and reject low disturbances. The 

internal model control internal model control is 

based on the principle of the internal model. It 

states that if any control system contains within it 

implicitly or explicitly some representation of the 

process to be controlled then a perfect control is 

easily achieved. If the control scheme has been 

developed based on the exact model of the process 

then it is possible to get perfect control 

theoretically. The open loop control strategy is 

shown in figure 1.  

Figure 1: Open loop control strategy 

For above open loop control system:  

Output is Gc. Gp.  

Set-point multiplication of all three parameters  

Gc is the controller of process  

Gp is the actual process or plant  

Gp* is the model of the actual process or plant 

A controller Gc is used to control the process Gp. 

Suppose Gp* is the model of Gp then by setting. 

Gc =inverse of Gp* inverse of model of the actual 

process  

And if  

Gp is Gp* the model is the exact representation of 

the actual process  

The perfect control on the process can be achieved 

by having the complete knowledge of the process. 

The ideal control performance is achieved without 

feedback which signifies that feedback control is 

necessary only when knowledge about the process 

is inaccurate or incomplete.  

The internal model control design procedure is 

identical to the open loop control design procedure. 

The implementation of internal model control 

results in a feedback system. So the internal model 

control is able to compensate for disturbances and 

model uncertainty while open loop control is not. 

The internal model control also detuned to assure 

stability if there is model uncertainty [7], [3]. 
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2. INTERNAL MODEL 

STRATEGY 
 

The process-model mismatch is common. The 

process model may not be invertible and the system 

is often affected by unknown disturbances. So the 

above open loop control arrangement will not be 

able to maintain output at setpoint. It forms the 

basis for the development of a control strategy that 

has the potential to achieve perfect control. This 

strategy is known as internal model control IMC.  

The general structure shown in Fig. 2 

 
  Figure 2:  Schematic of the internal model control 

scheme  

  

d(s) is an unknown disturbance which affects the 

system as shown in the figure 2  

U(s) is the manipulated input which is introduced 

to both the process and its model 

Y(s) is the process output compared with the output 

of the model, resulting in a signal (s).  

            (s) = [G (s) - p(s)] U(s) + d(s)           (1)    

 

             d(s)  =  zero                                             (2)                                  

Then the (s) is the difference in behaviour 

between the process and its model. 

 

When G (s) = p(s)                                             (3)  

                                              

(s) is equal to the unknown disturbance. 

The (s) is missing in the model p(s) so can be 

used to improve control. This is done by 

subtracting dˆ(s) from the setpoint R(s) which is 

very similar to affecting a setpoint trim. The 

resulting control signal is given by 

 

- (s)] Gc(s)  

      = {R(s) – [G (s) - p(s)] U(s) - d(s)} Gc(s)   (4) 

                     

U (s) = [R(s) - d(s)] Gc(s) / 1 + [G (s) - p(s)] Gc(s)          

                                                                              (5) 

Since Y(s) = Gp(s) U(s) + d(S)                            (6)  

The closed loop transfer function for the internal 

model control scheme is given by 

 

                  R(s) - d(s)] Gc(s) 

Y(s)  =   ---------------------------------- + d(s)        (7)                                                                          

                1 + [G (s) - p(s)] Gc(s) 

 

 

              Gp(s) R(s) Gc(s) + 1 - [Gc(s) p(s)]  d(s) 

Y(s)   = ----------------------------------------------------        

                      1 + [G (s) - p(s)] Gc(s)                 (8) 

 

Perfect setpoint tracking and disturbance rejection 

is achieved if Gc(s) = p(s)-1 and if G (s) = p(s). 

If G (s) ≠ p(s) perfect disturbance rejection can be 

realised provided Gc(s) = p(s)-1. 

The effects of process model mismatch should be 

minimised to improve robustness. A low-pass filter 

Gf (s) is added to attenuate the effects of process-

model mismatch. Since discrepancies between 

process and model behaviour u occur at the high 

frequency end of the system's frequency response. 

The internal model controller is designed as the 

inverse of the process model in series with a low-

pass filter, i.e. GIMC  = Gc(s) Gf(s). The order of 

the filter is so chosen that Gc(s) Gf(s) is proper to 

prevent excessive differential control action. The 

resulting closed loop is then given by 

 
          Gp(s) R(s) GIMC (s) + 1 - [GIMC (s) p(s)] d(s) 

Y(s) = ------------------------------------------------                              

               1 + [G (s) - p(s)] GIMC (s)                 (9) 

 

a. Practical Design of Internal Model 

Control 

It is relatively easy to design an internal model 

controller. p(s) is model of the process.  First 

factor p(s) into "invertible" and "non-invertible" 

components. 

 

                  p(s) = +p(s) -p(s)                      (10)       

 

The non-invertible component, -p(s) contains 

terms which if inverted, will lead to instability and 

reliability problems terms containing positive zeros 

and time-delays. Set Gc(s) = +p(s)-1 and then 

GIMC  = Gc(s) Gf(s), where Gf(s) is a low-pass 

function of appropriate order [7], [4]. 

 

Internal Model Control Tuning of Proportional 

Integral Derivative controllers: 

Internal model control IMC is a model-based 

control method. The internal model control method 

can also be used as a tuning method for the 

proportional integral derivative controller. 

Generally, the method is applicable for systems 

with constant delays but  the internal model control 

method is also applied for varying time-delay 
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systems. Figure 3 represents the internal model 

control principle. In the figure  

Gp(s) is the process controlled  

 

            Q is the IMC controller 

            p(s) is the process model  

            d(s)  is the disturbance 

            y is the process output 

             

             r is the set point 

 

The model output error y − y is subtracted from the 

reference signal and fed into the internal model 

control controller which calculates the control 

signal. 

 
        Figure 3: IMC  modified structure [1] 

 

A internal model control controller Q(s) is 

calculated so that the process model is first divided 

into two parts 

 

                p(s) = p+ (s) p- (s)                     (11)                                         

 

p+ (s) is the non-invertible part of the model 

including all unstable zeros and delays. The rest of 

the model is included in p- (s). The controller is 

given as 

 

                Q (s) = - (s)-1 f(s)                            (12) 

where f  is a low-pass filter transfer function of 

order n given as 

 

                       1 

                f(s) =  -----------------------                  (13) 

              (1 + s λIMC)n  

The low-pass filter is required in order to have a 

causal controller. The  λIMC is the tuning 

parameter of the internal model control method. 

The value of λIMC has a significant effect on the 

performance and robustness of the controlled 

system. There is a trade-off a very fast and 

simultaneously very robust tuning is generally 

difficult to achieve. In varying time-delay systems 

where robustness with respect to delay variance 

plays a crucial role the tuning of λIMC turns out to 

be crucial. The dependency between the jitter 

margin the control system performance. So the 

λIMC parameter is further discussed where control 

is used in the NCS setup [5], [6]. 

When implementing the internal model control 

controller, it is useful to recognize the dependency 

between the internal model control controller Q in 

Figure 3.1 and the controller in the classical 

feedback loop. The internal model control law in 

the classical control loop is given by 

 

                                      Q(s) 

               Gc(s)   =   ------------------                    (14)                                 

                                 1- (s) Q(s) 

 

The process delays must be approximated with 

linear transfer functions in order to be able to 

calculate the controller if the controller is used. A 

constant delay of τ seconds corresponds to an 

exponential function e−τ s in the Laplace domain, 

and the delay can be approximated with the Taylor 

series expansion or the first order Padé 

approximation 

 

                                     (1- s τ / 2) 

                 e−τ s =      -----------------                   (15)                                                           

                                     (1- s τ / 2) 

 

The internal model control design often yields high 

order controllers under certain assumptions. It is 

possible to obtain the proportional integral control 

structure from the internal model control design 

and thus get the tuning parameters for a regular 

proportional internal control controller. Consider 

the FOTD process model. Using the internal model 

control design and the first order Taylor series 

expansion e−sτ ≈1− sτ with n = 1 order of the low-

pass filter the controller C becomes [2], [10]. 

                   1 + sT                             T                                           

CPI(s)  =  ---------------------- = ----------------------             

                 Kps (λIMC + τ)          Kp (λIMC + τ)      

                      

 

           =  (1 + 1 / sT)                                           (16) 

The proportional integral controller structure with 

parameters is given below 

                                                                                     

                  T     

K  = -------------------  =   Ti = T                         (17)                                  

          Kp (λIMC + τ)  

 

 

             (1 + 1 / sT)                            1                                                                     

 kp =  ---------------------; ki =  -----------------     (18)                                

           Kp (λIMC + τ)             Kp (λIMC + τ) 

 

If the Padé approximation of the delay is used  the 

controller C becomes 
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                          (1 + sT) (1 + 1 / s τ / 2)                 

 CPID (s)  =  --------------------------------------    (19)                               

                      Kps (s λIMC / 2 + λIMC  + τ) 

 

                         (1 + sT) (1 + 1 / s τ / 2)                 

 CPID (s)  =  -----------------------------------        (20)                               

                              Kps (λIMC + τ) 

 

a proportional integral control controller. This form 

of the proportional integral control controller is 

actually the interacting controller or the analog 

algorithm [8]. Comparing (16) and (18) reveals that 

 

                             T                        

CPID (s) = ----------------- (1 + 1 / sT) (1 + s τ / 2)             

                   Kps (λIMC + τ)                                (21) 

                           ↑ 

                      CPI(s) 

       

                   T                                                  1                               

     =   -------------------(1 + τ / 2) + -------------------- 

          Kp (λIMC + τ)                      Kp (λIMC + τ) s          

                 ↑                                                   ↑    

                kp                                                 ki 

 

                   T τ s 

       + -----------------------                                   (22)                                      

          2 Kp (λIMC + τ)         

                     ↑                                                                                              

                   kd       

 

 

 

                  T                                                                                    

     K = ------------------ (1 + τ / 2T); Ti = T + τ / 2            

            Kp (λIMC + τ)      

                                                             

                      T τ 

      Td =  --------------------                                  (23) 

                   2T +  τ     

 

 

The Internal Model Control Based Proportional 

Integral Derivative Control Design Procedure: 

The following steps are used in the internal model 

control based proportional integral derivative 

control system design 

 

1. First of all controller transfer function q(s) has to 

be find out  which includes a filter f(s) to make 

q(s) semiproper or to give it derivative action the 

order of the numerator of q(s) is one order 

greater that the denominator of q(s). It is a major 

difference from the internal model control 

procedure. In order to find an equivalent 

proportional integral derivative controller q(s) 

needs to be improper. For integrating or unstable 

processes or for better disturbance rejection a 

filter with the following form will often be used  

 

            f (s) = λs + 1 / (λs + 1)n                   (24) 

2. From this the equivalent standard feedback  

    controller using the transformation is given by 

 

                   Gc(s) = Q(s) / 1 - p (s) Q(s)          (25)  

 

3.The equation (25) needs to be shown in  

proportional integral derivative form and then 

evaluate kc, τi, τd. Sometimes this procedure 

results in an ideal proportional integral derivative 

controller cascaded with a first-order filter with a 

filter time constant (τf). 

 

    Gc(s) = kc [(τi τDs² + τis + 1) / τis] * [1 / τfs + 1]                        

                                                                            (26) 

4.For both the perfect model case and cases with  

model mismatch closed-loop simulations has to 

be performed. Adjust λ considering a trade off 

between performance and robustness sensitivity 

to model error. Initial values for λ will be around 

1/3 to 1/2 the dominant time constant [7]. 

             

Internal Model Control-Based Feedback Design 

for Processes with a Time Delay: 

Some approximation to be made for the dead time 

for proportional integral derivative equivalent form 

for processes with a time delay we must make. The 

internal model control-based proportional integral 

derivative procedure is only done to yield a 

proportional integral derivative type controller. So  

either a first-order Padé approximation for dead 

time or neglect dead time entirely and use the first-

order transfer function results [11], [13]. 

 

First-Order + Dead Time: 

The first-order + dead time is the most common 

representation of chemical process dynamics. The 

proportional integral derivative equivalent form 

developed is useful for a large number of process 

control loops. The following steps are used in the 

internal model control based proportional integral 

derivative design for first order plus dead time 

processes. The process is given by 

 

            Gp(s) = kp e - s / τp s + 1                      (27)             

 

1. The first order approximation for the dead time is 

given by 

              e - s = (-0.5 s + 1) / (0.5 s + 1)                (28)  

                                      

               Kp e - s           kp(-0.5 s + 1) 

Gp(s) = -------------- = ----------------------------  (29) 

               τp s + 1           (τp s + 1) (0.5 s + 1) 
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2. Factor out the noninvertible elements to avoid 

the bad part all-pass 

 

  p- (s) =  kp / (τp s + 1) (0.5 s + 1)         (30)                                    

 

  p+ (s) = (-0.5 s + 1)                               (31)                                       

3. The idealized controller is then given by 

 

         (s)  =  (τp s + 1) (0.5 s + 1) / kp             (32)    

                                 

 

4. The filter f(s) is added to make the Q(s) proper. 

But Q(s) will be make semiproper to get the 

proportional integral derivative controller. The 

derivative option will be used to allow the 

numerator of q(s) to be one order higher than the 

denominator. It is done only to obtain an ideal 

proportional integral derivative controller. 

 Q(s) = (s)  f(s)  =  (1 / p- (s)) f(s)                                        

 

     = (τp s + 1) (0.5 s + 1)  (1) / kp (λs + 1)   (33) 

                                            

 The proportional integral derivative equivalent 

can be given as 

 

        Gc(s) = Q(s) / 1 - p (s) Q(s)  

 

            (s)  f(s)  / 1 - p (s) f(s) Q(s)            (34) 

        
(s)  f(s)  / 1 – p- (s) p+ (s) (1 / p- (s)) f(s)   

 

(s)  f(s)  / 1 – p+ (s) f(s) 

 

                  

           1              (τp s + 1) (0.5 s + 1)   

    =  ---------  -----------------------------------       (35)                                                

           kp                ( λ + 0.5 s)  s 

 

                  1        0.5 τp s² + (τp + 0.5 ) s + 1   

Gc(s)  = -------   -----------------------------------   (40)                                   

                 kp              ( λ + 0.5 s)  s 

Multiply equation (3.40) by (τp + 0.5) / ( /τp + 

0.5 ) PID parameters can be evaluated as shown  

below 

         Kc =  (τp + 0.5 ) / kp (λ + 0.5 )               (41)  

                             

         τi   =  τp + 0.5                                           (42)                       

         τD =  (τp ) / (2τp + )s                             (43)  

                     

The internal model control based proportional 

integral derivative controller design procedure has 

resulted in a proportional integral derivative 

controller when the process is first-order + dead 

time. A Padé approximation for dead time was used 

in this development meaning that the filter factor 

(λ) cannot be made arbitrarily small. So there will 

be performance limitations to the internal model 

control based proportional integral derivative 

strategy that do not occur in the internal model 

control strategy. Rivera et.al. (1986) recommend 

that λ > 0.8  because of the model uncertainty due 

to the Padé approximation. The use of an all-pass in 

the factorization will lead to a proportional integral 

derivative controller in series with a first-order lag. 

The parameters in this case are shown as the first 

entry in Table 1. Morari and Zafiriou (1989) 

recommend λ > 0.25  for the PID + lag 

formulation. The third and fourth entries neglect 

the time delay in forming the PI controller [7] 

 

 

Table 1: Proportional integral derivative Tuning 

Parameters for Stable Time-Delay Processes [7] 

  

Integrator + Dead Time: 

For processes where the time constant is dominant, 

the step response behaviour can be approximated as 

integrator + dead time as characterized by the 

following transfer function.  

 

                 Gp(s) = K e - s / s                             (44)   
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A Taylor series approximation for dead time is 

used. Also, the special filter form for integrating 

systems is used [7]. 

                  e - s = - s + 1                                   (45) 

        Gp(s) = k(- s + 1) / s  = (k / s) (- s + 1)     (46)  

         Q(s) = (s / k). ((λs + 1) / (λs + 1)²)             (47) 

By using internal model control based proportional 

integral derivative procedure 

        Gc(s) = Q(s) / 1 - p (s) Q(s)                     (48)  

A proportional integral controller results with the 

following parameters 

                      kc = 2λ +  / k(λ + )²                  (49)   

                      τi = 2λ +    

                   

Gain + Dead Time: 

For processes where the time delay is dominant the 

step response behavior can be approximated as gain 

+ dead time as characterized by the following 

transfer function. 

 

                     Gp(s) = K e - s                              (50) 

Using a second-order Padé approximation for the 

time delay [7] 

 

                            ² s² / 12 -  s / 2 + 1 

              e - s = -------------------------------         (51)     

              ² s² / 12 +  s / 2 + 1 

 

 

 

                                  ² s² / 12 -  s / 2 + 1               

                Gp(s) = k---------------------------          

                                ( ² s² / 12 +  s / 2 + 1)   

 

                         k 

          = -----------------( ² s² / 12 -  s / 2 + 1)    (52)                                                                                                                   

           ( ² s² / 12 +  s / 2 + 1)         

  

The PID plus filter controller results with 

 

                            kc  =  / (4λ + ) 

                            τi   =   / 2                               (53) 

                            τd  =   / 6 

                            τF  =  (2λ² - /6) / (4λ + ) 

 

but λ>  / 2. 

3. SIMULATION AND 

RESULTS 
a. System Implementation: 

The internal model control based proportional 

integral derivative controller design with time delay 

is implemented using matlab. The version of 

matlab used here is 7.13.0.564 (R20011b). The 

standard matlab package is useful for linear 

systems analysis. The version of simulink used is 

7.8 (R2011b). The simulink is far more useful for 

control system simulation. simulink enables the 

rapid construction and simulation of control block 

diagrams. 

 

Ideal Internal Model Control based Proportional 

Integral Derivative Controller: 

The actual process transfer function is never known 

exactly. So it is necessary to use two transfer 

function representations of the process. So one is 

considered as process or plant which is never 

known exactly and the second is considered as 

process model which is known exactly. In internal 

model controller process model is kept in parallel 

with the actual process. The ideal internal model 

control based proportional integral derivative 

controller means the model is perfect and there is 

no disturbance and delay. So the feedback is also 

nil. The equation which tells that the model is 

perfect is given below i.e open loop system. 

 

                       (s)                               (54)                                                         

 

                         d(s)   =  0                                    (55)                                           

 

              Gp(s) is the process transfer function. 

 

              (s) is the process model. 

 

               d(s) is the disturbance. 

 

b. Simulation of Ideal Internal Model 

Control Based Proportional Integral 

Derivative Design: 

The internal model controller provides a 

transparent frame work for control system design 

and tuning. For simulation of ideal internal model 

control based proportional integral derivative 

controller. The first order transfer function of the 

process has been adopted as a reference [7]. The 

derivation to calculate the parameters of ideal 

internal model control based proportional integral 

derivative controller is given below. 

    Gp(s) = kp / (τps + 1) 

Gp(s) is the transfer function of the process 

                  Gp(s) =  10 / (8s + 1)                        (56) 
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The ideal internal model control controller transfer 

function Q(s) which includes the filter f(s) to make 

a Q(s) semiproper is given below 

                   Q(s) = Gp-1(s) f(s)                           (57) 

    f(s)   = 1 / (λs + 1)                            (58)     

         Q(s) = ( (8s + 1) / 10 ) * (1 / λs + 1)          (59) 

  λ  is the tuning parameter of the filter f(s) 

Take the value of λ as 0.533, which is practically 

one third of one fifth of time constant and put it in 

equation (59) to get the value of  ideal internal 

model control controller Q(s). The equation 

becomes 

             Q(s) = ( (8s + 1) / 10 ) * (1 / 0.53s + 1) 

             Q(s) = (8s + 1) / (5.33s + 10)                 (60) 

From the above equations,  the value for the 

proportional integral tuning parameters is given by 

                      kc =  τp / kpλ   

        kc = 8 / 5.3 = 1.5                                                                        

         τi = τp =  8                                                                        

 

So the transfer function of proportional integral 

controller is now given by 

 

  Gc(s) = kc ( (τis +1) / (τis)                                                          

   

  Gc(s) = 1.5 ( ( 8s +1) / (8s) )  
 

The above transfer function without delay and 

disturbance results in proportional integral control 

only.                                              

 

The Simulink block diagram of ideal IMC based 

proportional integral derivative controller is shown 

in figure 4 

 

 
Figure 4: Block diagram of ideal internal model 

control based proportional integral derivative 

design 

 

 
 

Figure 4.1: Unit step response of ideal internal 

model control based proportional integral 

derivative controller with no disturbance and time 

delay 

 

c. Simulation of Internal Model Control 

Based Proportional Integral Derivative 

Design for a First order with Time Delay 

+ First order disturbance: 

The transfer function of an internal model control 

based proportional integral derivative controller for 

a first order with time delay plus first order 

disturbance is is given below. The transfer function 

is taken from the reference papers [9]. A first order 

Pade’s approximation is used for time delay. 

            Gp(s) = ( (100 / (100s + 1) ) * e- s        (61) 

            Gd(s) = (1 / (30s + 1) )                           (62)                                     

           Gd(s) is the disturbance 

             = time delay 

                     So,  = 1                                                                                               

           As there is time delay so first order Pade’s     

approximation is used which is given by 

                            e- s    = (-0.5s + 1) / (0.5s + 1)             (63)  
               Gp(s) = (100 / (100s + 1) ) * ( (-0.5s + 1) / (0.5s + 1) )       

                                                                        ....(64) 

Factor out the noninvertible elements to avoid the 

bad part all-pass 

              p- (s) = 10 / (100s + 1) (0.5s + 1)      (65) 

p+ (s) = (-0.5s + 1)                            (66)                                                

 Now the value of f(s) = 1 / (λs + 1)² to make the 

controller semiproper 

 

Q(s) = ( (100s + 1) (0.5s + 1) / 100) * 1 / (λs + 1)²                           

                                                         ....(67) 

Take the value of λ as 20, which is having range 

λ>0.2τp. But practically the initial values of λ lie 

between one third to one fifth of time constant.  Put 

the value of λ in equation (67) to get the value of 

IMC controller Q(s). The equation becomes 

    

Q(s) = (50s² + 100.5s + 1) / (400s² + 40s + 1)    (68) 
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From the above equation (68), the value for the 

proportional integral derivative tuning parameters 

is given by 

    kc =  (τp + 0.5 ) / kp (λ + 0.5 ) 

     kc = (100 + .5) / 100 (20 + 0.5)  = 0.049      (69)                       

      τi = τp + 0.5  = 100.5                    (70)                                                 

      τd = τp  / 2 τp +     = 0.5              (71)                                               

So the transfer function of proportional integral 

derivative controller is now given by 

                Gc(s) = Q(s) / (1- Gp(s) Q(s))            (72)                                          

                                            

Figure 4.2: Block diagram of internal model 

control based proportional integral derivative 

controller for a first order with time delay plus first 

order disturbance 

                                   

                                          

 
 

Figure 4.3: Unit step response of internal model 

control based proportional integral derivative 

controller for a first order with time delay plus first 

order disturbance 

 

Simulation of Internal Model Control Based 

Proportional Integral Derivative Design for a 

Second order with time delay plus first order 

disturbance:  

The transfer function of an internal model control 

based proportional integral derivative controller for 

a second order with time plus first order 

disturbance is given below. The transfer function is 

taken from the reference papers [9]. As it is 

difficult to implement internal model control 

controller directly to higher order system due to 

increased complexity so it is reduced to a low order 

model. The method used to reduce the model  is 

given by the half rule. According to this rule the 

largest neglected denominator time constant lag is 

distributed evenly to the effective delay and the 

smallest retained time constant. In it disturbance of 

first order is taken which is given below. A first 

order Pade’s approximation is used for time delay. 

 

        Gp(s) = ( (2 / (10s + 1) (5s + 1) ) * e- s     (73) 

 

         Gd(s) =  (1 / (30s + 1)                                (74) 
 

For a first order model τ2 =0 and the above 

parameters is given as 

 

   τ1 = τ10 + (τ20 / 2) ;    = ₒ + (τ20 / 20) + ∑ 

τi0                         

                                                                         i≥3 

 

           τ1 = 12.5;  k = 2 ; τ2 = 0 ;  = 3.5           (75)  

                                               

By using half rule reduced model is given as 

                               

           Gp(s) = ( 2 / 12.5s +1 ) * e-3.5 s            (76)              

                                          

As there is time delay so first order Pade’s 

approximation is used which is given by 

 

           e-3.5 s    = (-1.75s + 1) / (1.75s + 1)       (77)                                           

      
Gp(s) = (2 / (12.5s + 1) ) * ( (-1.75s + 1) / (1.75s + 1) )               

                                                         .....(78) 

Factor out the noninvertible elements to avoid the 

bad part all-pass 

             p- (s) = 2 / (12.5s + 1) (1.75s + 1)      (79)                                                 

Now the value of f(s) = 1 / (λs + 1)² to make the 

controller semiproper 

 

  Q(s) = ( (12.75s + 1) (1.75s + 1) / 2) * 1 / (λs + 1)²                          

                                                                       .....(80) 

 

Take the value of λ as 3, which is having range 

λ>0.2τp. But practically the initial values of λ lie 

between one third to one fifth of time constant.  Put 

the value of λ in equation (80) to get the value of 
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internal model control controller Q(s). The 

equation becomes 

 Q(s) = (21.875s² + 14.25s + 1) / (18s² + 12s + 2)                                         

                                                                       .....(81) 

The value for the proportional integral derivative 

tuning para  meters is given by 

                         τc =   = 3.5                               (82)                                                      

                       k1 = k / τ10  = 0.2                        (83)                                          

             kc = (1 / k1) * ( 1 / τc +    )  = 0.312    (84)                                

                  τi = 8  = 8*3.5 = 28                         (85)                                          

                   τD = τ2 = 5                                      (86)                                         

By getting the above values PID transfer function 

can be evaluated 

    

 
Figure 4.4: Block diagram of internal model 

control based proportional integral derivative 

controller for a second order with time delay plus 

first order disturbance 

 

 
 

Figure 4.5: Unit step response of internal model 

control based proportional integral derivative 

controller for a second order with time delay plus 

first order disturbance 

 

Simulation of Internal Model Control Based 

Proportional Integral Derivative Design for a 

third order with time Delay plus first order 

disturbance: 

The transfer function of an internal model control 

based proportional integral derivative controller for 

a third order with time delay plus first order 

disturbance is given below. The transfer function is 

taken from the reference papers [12]. As it is 

difficult to implement internal model controller 

directly to higher order system due to increased 

complexity so it is reduced to a low order model. 

The method used to reduce the model is given by 

the half rule. According to this rule the largest 

neglected denominator time constant lag is 

distributed evenly to the effective delay and the 

smallest retained time constant. In it disturbance of 

first order is taken which is given below. A first 

order Pade’s approximation is used for time delay. 

 

            Gp(s) = ( (2 / (2s + 1) (s + 1)² ) * e- s    (85)                       

      

            Gd(s) =  (1 / (30s + 1)                             (86) 

 

For a first order model τ2 =0 and the above 

parameters is given as 

 τ1 = τ10 + (τ20 / 2);    = ₒ + (τ20 / 20) + ∑ τi0                          

                                                                       i≥3 

             τ1 = 2.5 ;  k = 2 ; τ2 = 0 ;  = 1.5  ........(87) 

 

By using half rule reduced model is given as 

                               

              Gp(s) = ( 2 / 2.5s +1 ) * e-1.5 s           (88) 

 

As there is time delay so first order Pade’s 

approximation is used which is given by 

 

            e-3.5 s    = (-0.75s + 1) / (0.75s + 1)      (89) 

 
Gp(s) = (2 / (2.5s + 1) ) * ( (-0.75s + 1) / (0.75s + 1) )  (90) 

 

Factor out the noninvertible elements to avoid the 

bad part all-pass 

  

p- (s) = 2 / (2.5s + 1) (0.75s + 1)                (91)                     

  

Now the value of f(s) = 1 / (λs + 1)² to 

make the controller semiproper 

 

Q(s) = ( (2.75s + 1) (0.75s + 1) / 2) * 1 / (λs + 1)²  

                                                                            (92) 

 

Take the value of λ as 1, which is having range 

λ>0.2τp. But practically the initial values of λ lie 

between one third to one fifth of time constant.  Put 

the value of λ in equation (4.30) to get the value of 

IMC controller Q(s). The equation becomes 
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   Q(s) = (1.875s² + 3.25s + 1) / (2s² + 4s + 2)   (93) 

 

The value for the proportional integral derivative 

tuning parameters is given by 

                    τc =   = 1.5                                    (94) 

                    k1 = k / τ10  = 1                              (95)  

          kc = (1 / k1) * ( 1 / τc +    )  = 0.33         (96)  

                   τi = 8  = 8*1.5 =  12                       (97) 

     τD = τ2 = 1                                      (98) 

 

By getting the above values proportional integral 

derivative transfer function can be evaluated. 

                                                                                                                                                                                               

Figure 4.6: Simulink block diagram of internal 

model control based proportional integral derivative 

controller for the third order with time delay plus 

first order disturbance 

 

 
Figure 4.7: Unit step response of internal model 

control based proportional integral derivative 

controller for the third order with time delay plus 

first order disturbance 

 

Various tuning parameters of internal model 

control based proportional integral derivative 

design based on different orders of transfer 

functions obtained from above are shown in table 2 

 

Table 2: Various tuning parameters of internal 

model control based proportional integral 

derivative design based on different orders of 

transfer functions 

 

 

4. CONCLUSION 

The work discussed here is based on the PID 

controller design  using IMC with time dealys 

which affects the output of a system. So Pade’s 

approximation for the time delays in internal model 

control based proportional integral derivative 

controller design is used along with half rule to 

handle the complex models by approximating the 

remaining high order dynamics by an effective 

delay. By comparing the figures of unit step 

responses it is proved that the internal model 

control based proportional integral derivative 

controller will not give the same results as the 

internal model control strategy because of 

approximation used for Delay time. And also 

various tuning parameters of PID have been found 

based on the different orders of transfer functions. 

The standard internal model control filter from f(s) 

=1 / (λs + 1) shows good set point tracking. Thus 

internal model control based proportional integral 

derivative controller is able to compensate for 

disturbances and model uncertainty while open 

loop control is not. Internal model controller is also 

detuned to assure stability even if there is model 

uncertainty. The internal model control based 

proportional integral derivative controller design is 

conventional controller. So due to speed in their 

execution, accuracy of control, ease of 

configuration, low energy consumption, probability 

etc, artificial intelligence based controllers such as 
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Fuzzy logic based controllers and Artificial Neural 

Network based controller can be used 
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