
Webpage: www.ijaret.org                                                                           Volume 2, Issue VII July 2014                                                                                             
                                                                                                                                                                      ISSN 2320-6802                                         

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN 

ENGINEERING AND TECHNOLOGY 
WINGS TO YOUR THOUGHTS….. 

  
Page 27 

 
  

Abstract:  The development of relational database management systems served to focus the data management 

community for decades, with spectacular results. In recent years, however, the rapidly-expanding demands of “data 

everywhere” have led to a field comprised of interesting and productive efforts, but without a central focus or 

coordinated agenda. The most acute information management challenges today stem from organizations (e.g., 

enterprises, government agencies, libraries, “smart” homes) relying on a large number of diverse, interrelated data 

sources, but having no way to manage their data spaces in a convenient, integrated, or principled fashion. This paper 

proposes a scheme for improving performance of indexing in personal data spaces using cache. 

Keywords: personal dataspace, lucene, indexing, DSSP. 

 

1. INTRODUCTION 
A Personal Dataspace includes all the data pertaining 

to a user on all His local disks and on remote servers 

such as network drives, email, and web servers. This 

data is represented by heterogeneous mix of files, 

emails, bookmarks, music, pictures, persona 

information stream and so on. In this we focus on 

personal dataspaces that is the total of all the personal 

information pertaining to a certain person. DSSP 

(DATASPACE SUPPORT PLATFORM) is a system 

abstraction capable of Managing all the data of a 

particular organization regardless of its format and 

location.[1-3]PDSMS (PERSONAL DATASPACE 

MANAGEMENT SYSTEM) is the total of all 

personal information pertaining to a certain 

person.[7] This paper is organized as follows. The 

next section outlines the cache memory .In section 2 

we  list the current features of our software which is 

open source and available under Apache. Next 

section determines the demonstration outline. 

 

2. CACHE MEMORY 
Definition and Rationale: 

Cache memories are small, high-speed buffer 

memories used in modern computer systems to hold 

temporarily those portion of the contents of main 

memory which are (believed to be) currently in use. 

Information located in cache memory may be 

accessed in much less time than that located in main 

memory. Thus, a central processing unit (CPU) with 

a cache memory needs to spend far less time waiting 

for instructions and operands to be fetched and/or 

stored. For example in typical large, high-speed 

computers (e.g., Amdahl 470V/7, IBM 3033), main 

memory can be accessed in 300 to 600 nanoseconds; 

information can be obtained from a cache, on the 

other hand, in 50 to 100 nanoseconds. Since the 

performance of such machines is already limited in 

instruction execution rate by cache memory access 

time, the absence of any cache memory at all would 

produce a very substantial decrease in execution 

speed. On a read access, it is possible to read the 

cache line at the same time that the tag is read and 

compared. On a hit, the required data is readily 

available, and on a miss, the read data can be 

discarded awaiting cache line replacement. 

However, on a write hit, it is necessary to first read 

the cache line, modify only the effected bytes before 

writing the line back to cache. It is possible to 

pipeline writes to hide the two steps required for a 

write. It is also necessary to address how the main 

memory is notified of the changes made to cache 

lines. In write-through, all writes to a cache line will 

also be written to main memory. Often buffers are 

used to process writes to main memory, to avoid 

blocking the processor on a write. In write-back 

(orcopy back) the main memory is updated only 

when a cache line is replaced.[8] 

 

3. TOOL FOR INDEXING: 

LUCENE 
Lucene is an extremely rich and powerful full-text 

search library written in Java. Lucene can be useed to 

provide full-text indexing across both database 

objects and documents in various formats (Microsoft 

Office documents, PDF, HTML, text, and so on.  The 

basics of using Lucene to add full-text search 

functionality to a fairly typical J2EE application: an 

online accommodation database. Roughly, supporting 

full-text search using Lucene requires two steps: (1) 

creating a lucence index on the documents and/or 

database objects and (2) parsing the user query and 

looking up the prebuilt index to answer the query [5]. 

lucene provides search over documents. A document 

is essentially a collection of fields where a field 

supplies a field name and value. Lucene manages a 

To improve performance of indexing using cache for 

personal dataspaces 
 Kannu Wadhwa 

 
Seth Jai Prakash Mukand Lal Institute of Technology,Radaur 

kannuwadhwa14@gmail.com 

 



Webpage: www.ijaret.org                                                                           Volume 2, Issue VII July 2014                                                                                             
                                                                                                                                                                      ISSN 2320-6802                                         

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN 

ENGINEERING AND TECHNOLOGY 
WINGS TO YOUR THOUGHTS….. 

  
Page 28 

 
  

dynamic document index, which supports adding 

documents to the index and retrieving document 

index using a highly expressive search API. Lucene 

does not in any way constrain document structures. 

An index may store a heterogeneous set of 

documents, with any number of different fields which 

may vary by document in arbitrary ways. Lucene can 

store numerical and binary data as well as text .What 

actually gets indexed is a set of terms. A term 

combines a field name with a token that may be used 

for a search. For instance, a title like Molecular 

Biology, 2nd Edition might yield the tokens 

molecule, biolog, 2, and edition after case 

normalization, stemming and stop listing. Provides 

the reverse mapping from terms, consisting of field 

names and tokens, back to documents. To search this 

index, we construct a term composed of the field title 

and the tokens resulting from applying the same 

stemming and stop listing to the text we are looking 

for a Lucene search takes a query and returns a set of 

documents that are ranked by relevancy with 

documents most similar to the query having the 

highest score. [6] 

Lucene’s search scoring algorithm weights results 

using TF-IDF, term frequency inverse document 

frequency. Term frequency means that high 

frequency terms within a document have higher 

weight than do low-frequency terms. Inverse 

document frequency means that terms which occur 

frequently across many documents in a collection of 

documents are less likely to be meaningful 

descriptors of any given document in a corpus and 

are therefore down-weighted. 

In Lucene, documents are represented as instances of 

the final class Document in package 

org.apache.lucene.document. Documents are 

constructed using a zero-arg constructor Document(). 

Once a document is constructed, the methods add 

(Field able) is used to add fields to the document. 

Lucene does not in any way constrain document 

structures. An index may store a heterogeneous set of 

documents, with any number of different fields which 

may vary by document in arbitrary ways. It is up to 

the user to enforce consistency at the document 

collection level. A document may have more than 

one field with the same name added to it. All of the 

fields with a given name will be searchable under that 

name (if the field is indexed, of course). The behavior 

is conceptually similar to what you’d get from 

concatenating all the field values; the main difference 

is that phrase searches don’t work across the 

concatenated items [5]. Lucene employs analyzers to 

convert the text value of a field marked as analyzed 

to a stream of tokens. At indexing time, Lucene is 

supplied with an implementation of the abstract base 

class Analyzer in packageorg.apache.lucene.analysis. 

An analyzer maps a field name and text value to a 

Token Stream, also in the analysis package, from 

which the terms to be indexed are retrieved using an 

iterator-like pattern.[5] 

 

4. DEMONSTRATION OUTLINE 
The goal is to build an application that indexes files 

of different formats and search for specific keywords 

[4]. For this latest stable version of lucene is 

downloaded from Apache download mirrors and a 

new Eclipse project is set up and JAR is included in 

project’s class path. Before executing search queries 

an index is built against which queries will be 

executed with the help of a class named Index Writer, 

which is the class that creates and maintains an index. 

The Index Writer receives Documents as input, 

where documents are unit of indexing and search. To 

create an Index Writer, an Analyzer is required. This 

class is abstract and concrete implementation used is 

Simple Analyzer. A class is constructed and the 

location of the index is provided i.e. where the index 

data will be saved on the disk (“c:/index/”). Then the 

data directory is provided, i.e. the directory which 

will be recursively scanned for input files. 

 (“C:/programs/eclipse/workspace/”). S. The “index” 

method takes into account the previous parameters 

and uses a new instance of Index Writer to perform 

the directory indexing. The “index Directory” method 

uses a simple recursion algorithm to scan all the 

directories for files with .java suffix. For each file 

that matches the criteria, a new Document is created 

in the “index File with Index Writer” and the 

appropriate fields are populated.  The class is run as a 

Java application via Eclipse, the input directory will 

be indexed and the output directory will look like the 

one in the following image. 

 

Figure 1: Indexing files 



Webpage: www.ijaret.org                                                                           Volume 2, Issue VII July 2014                                                                                             
                                                                                                                                                                      ISSN 2320-6802                                         

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN 

ENGINEERING AND TECHNOLOGY 
WINGS TO YOUR THOUGHTS….. 

  
Page 29 

 
  

 For the searching part of the equation, an Index 

Searcher class is needed, which is a class that 

implements the main search methods. For each 

search, a new Query object is needed and this can be 

obtained from a Query Parser instance.  The Query 

Parser has to be created using the same type of 

Analyzer that the index was created with. A Version 

is also used as constructor argument and is a class 

that is “Used by certain classes to match version 

compatibility across releases of Lucene”, according 

to the Java Docs. When the search is performed by 

the Index Searcher, a Top Docs object is returned as a 

result of the execution. This class just represents 

search hits and allows us to retrieve Score Doc 

objects. Using the ScoreDocs we find the Documents 

that match our search criteria and from those 

Documents we retrieve the wanted information.  

We provide the index directory, the search query 

string and the maximum number of hits and then call 

the “search Index” method. In that method, we create 

an Index Searcher, a Query Parser and a Query 

object. Note that Query Parser uses the name of the 

field that we used to create the Documents with Index 

Writer (“contents”) and again that the same type of 

Analyzer is used (Simple Analyzer). We perform the 

search and for each Document that a match has been 

found, we extract the value of the field that holds the 

name of the file (“filename”) and we print it. That’s 

it, let’s perform the actual search. Run it as a Java 

application and you will see the names of the files 

that contain the query string you provided. 

 

    Figure 2: Graph showing increased performance 

with cache 

5. CONCLUSION 
The key concept used here is cache memory. The 

words that is searched the most is put in cache thus 

the next time it is accessed it is accessed from the 

cache thus reducing the access time and improving 

the performance .Also cache replacement policy is 

used which  makes room for incoming data thus 

keeping only those words in cache that are most 

frequently accessed. 

 

REFERENCES  
[1] Michael Franklin, Alon Hacvey, David Maier 

“From databases to dataspaces, A new 

abstraction for information management” 

ACM SIGMOID Record December 2005. 

[2] Michael Franklin, Alon Halvey, David Maier 

“A First Tutorial on Dataspaces” 

[3] Xin Dong, Alon Halvey, “Indexing 

dataspaces,”  

[4] Shaoxu Song, Lei Chen, ”Indexing Dataspaces 

with partitions”, Springer, Volume 16, Issue 

2, pp 141-170 

[5] Wikipedia, Dataspaces 

http://en.wikipedia.org/wiki/Dataspaces 

[6] “A short introduction to lucene” 

http://oak.cs.ucla.edu/cs144/projects/lucene/ 

[7] Alon Halevy, Michael Franklin, David Mae 

“Principle of database system. 

[8] Cache Memories                                                

http://www.eecs.berkeley.edu/~knight/cs267/p

apers/cache_memories.pdf 

 

0 

2 

4 

6 

8 

10 

12 

14 

16 

4 20 50 120 

ti
m

e
(s

e
c)

 

datasize(mb) 

with cache 

without 
cache2 

http://en.wikipedia.org/wiki/Dataspaces
http://oak.cs.ucla.edu/cs144/projects/lucene/
http://www.eecs.berkeley.edu/~knight/cs267/papers/cache_memories.pdf
http://www.eecs.berkeley.edu/~knight/cs267/papers/cache_memories.pdf

